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�
 ABSTRACT 

Purpose: Multiple endocrine neoplasia type 1 (MEN1) is 
thought to increase the risk of meningioma and ependymoma. 
Thus, we aimed to describe the frequency, incidence, and specific 
clinical and histological features of central nervous system (CNS) 
tumors in the MEN1 population (except pituitary tumors). 

Experimental Design: The study population included patients 
harboring CNS tumors diagnosed with MEN1 syndrome after 
1990 and followed up in the French MEN1 national cohort. The 
standardized incidence ratio (SIR) was calculated based on the 
French Gironde CNS Tumor Registry. Genomic analyses were 
performed on somatic DNA from seven CNS tumors, including 
meningiomas and ependymomas from patients with MEN1, and 
then on 50 sporadic meningiomas and ependymomas. 

Results: A total of 29 CNS tumors were found among the 1,498 
symptomatic patients (2%; incidence ¼ 47.4/100,000 person-years; 
SIR ¼ 4.5), including 12 meningiomas (0.8%; incidence ¼ 16.2/ 

100,000; SIR ¼ 2.5), 8 ependymomas (0.5%; incidence ¼ 10.8/ 
100,000; SIR ¼ 17.6), 5 astrocytomas (0.3%; incidence ¼ 6.7/ 
100,000; SIR ¼ 5.8), and 4 schwannomas (0.3%; incidence ¼ 5.4/ 
100,000; SIR ¼ 12.7). Meningiomas in patients with MEN1 were 
benign, mostly meningothelial, with 11 years earlier onset com-
pared with the sporadic population and an F/M ratio of 1/1. Spinal 
and cranial ependymomas were mostly classified as World Health 
Organization grade 2. A biallelic MEN1 inactivation was observed 
in 4/5 ependymomas and 1/2 meningiomas from patients with 
MEN1, whereas MEN1 deletion in one allele was present in 3/41 
and 0/9 sporadic meningiomas and ependymomas, respectively. 

Conclusions: The incidence of each CNS tumor was higher in 
the MEN1 population than in the French general population. 
Meningiomas and ependymomas should be considered part of 
the MEN1 syndrome, but somatic molecular data are missing to 
conclude for astrocytomas and schwannomas. 

Introduction 
Multiple endocrine neoplasia type 1 (MEN1) is an inherited disease 

that predisposes carriers to primary hyperparathyroidism, duodenal– 

pancreatic neuroendocrine tumors (DP-NET), pituitary tumors, and 
adrenal, thymic, and bronchial neuroendocrine tumors (NET). MEN1 
is caused by mutations on the MEN1 gene in the heterozygous state. 
MEN1 is located on chromosome 11q13 and encodes for menin (1–3). 
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versity of Burgundy-Franche-Comté, CIC1432, Clinical Epidemiology Unit, Dijon, 
France. 6APHM, CHU Timone, Service d’Anatomie Pathologique et de Neuro-
pathologie, Marseille, France. 7Aix-Marseille Univ, CNRS, INP, Inst Neuro-
physiopathol, Marseille, France. 8Neurosurgery Departement, Aix-Marseille Univ, 
APHM, La Timone Hospital, Marseille, France. 9CHU de Nantes PHU2 Institut du 
Thorax et du Système Nerveux, Service d’Endocrinologie, Diabétologie et Nu-
trition, Nantes, France. 10CNRS UMR5293, Université de Bordeaux, Bordeaux, 
France. 11Service de Neurochirurgie B - CHU de Bordeaux, Bordeaux, France. 
12Department of Neurosurgery, Pitie-Salpetriere Hospital, AP-HP Sorbonne Uni-
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The criteria for diagnosis were first established in Gubbio (4) and have 
been regularly updated since (5, 6). 

MEN1 is suspected to increase the risk of ependymomas and 
meningiomas, but there is little literature on the subject. To our 
knowledge, no study so far has included a large series of primitive 
brain tumors in patients with MEN1. Moreover, the impact of these 
tumors on survival in MEN1 is unknown. Among primitive brain 
tumors, we retained for the present study meningiomas, ependymo-
mas, schwannomas, and astrocytic and/or oligodendrocytic (MESA) 
tumors. Pituitary tumors were excluded from the present study. We 
first aimed to describe the main clinical epidemiological and histo-
logical features of these tumors in the MEN1 population. Second, to 
better understand the role of MEN1 in the growth of such tumors, we 
aimed to assess MEN1 mutations and deletions in MESA tumors from 
patients with MEN1 compared with those in sporadic tumors. 

Materials and Methods 
MEN1 cohort with and without CNS tumors 

The study population was diagnosed with MEN1 syndrome and 
followed up in the MEN1 cohort of the Association Francophone de 
Chirurgie Endocrinienne and the Groupe d’étude des Tumeurs En-
docrines (AFCE-GTE). The MEN1 cohort of the AFCE-GTE net-
work has been previously described, providing different studies on 
pituitary adenoma, breast cancer, or DP-NET (7–12). 

Briefly, the AFCE-GTE French MEN1 cohort, created in February 
1991, includes 22 reference clinical centers and the genetics de-
partments responsible for diagnosing MEN1. MEN1 cases are de-
tected both by the network of genetics laboratories in charge of the 
diagnosis (TENGEN) and by the national reference centers for 
neuroendocrine tumors where multidisciplinary decisions are made 
(REseau NAtional de référence pour la prise en charge des Tumeurs 
neuro ENdocrines; https://www.reseau-gte.org/renaten/). Including 
criteria are based on international recommendations (See Supple-
mentary Material S1 for additional information; refs. 6, 13). After 
receiving patients’ information about the cohort, copies of clinical, 
surgical, and pathological reports were obtained and examined after 
pseudonymization by a single investigator (PG) before inclusion in 
the cohort. Inclusion and data collection processes followed French 

legal rules (Supplementary Material). Genetic testing for MEN1 was 
performed by Sanger sequencing, multiplex ligation–dependent 
probe amplification (MLPA) analysis, or next-generation sequenc-
ing (NGS) on leukocyte DNA from patients reviewed in one of the 
laboratories of the TENGEN network (14). 

Data are gathered in a secure database at the Dijon Clinical In-
vestigation Center (Institut National de la Santé et de la Recherche 
Médicale, CIC1432) and monitored regularly. Written and signed 
informed consent was obtained from patients following the French 
rules regarding observational cohorts. Explanations regarding the 
aims of the studies are given, i.e., best knowledge of the natural 
history of MEN1 disease in order to improve the quality of life. The 
study was conducted in accordance with the Declaration of Helsinki 
ethical guidelines. The MEN1 cohort was approved by the Institu-
tional Review Board CPP Sud-Est V (2018-A0192847), the Comité 
Consultatif sur le Traitement de l’Information en matière de 
Recherche (Consultative Committee on Treatment of Information 
in Health Research, file number 12.364), and the national data 
privacy commission [Commission Nationale de l’Informatique et des 
Libertés (National Committee for Data Protection), authorization 
number DR 2013-348], including an authorization to contact gen-
eral practitioners and patients (n°912352). 

MEN1, CNS tumor diagnosis, and follow-up 
The diagnostic criteria used for MEN1 conformed to the regularly 

updated recommendations (Supplementary Data S1; refs. 4–6) and 
were confirmed by genetic testing for MEN1 (14). 

Among this MEN1 cohort, all patients with diagnosed central 
nervous system (CNS) tumors were selected. MESA tumors were 
defined by neuropathological results if there had been surgical re-
moval or biopsy of the tumor. Otherwise, the diagnosis was based 
on MRI observation, including typical radiological features, radi-
ologist conclusions, clinical history, and compatible follow-up. 
Follow-up starts at the date of birth of the patient. The loss of 
follow-up rate was 44.3% for this population followed up for a 
median follow-up of 50 years (interquartile range ¼ 36–63 years). 

Epidemiological and clinical data collection from patients 
with MEN1 with and without MESA 

Data were extracted from the AFCE-GTE French cohort of pa-
tients with MEN1. Clinical data included age at MESA diagnosis, 
age at MEN1 diagnosis, gender, clinical history, imaging conclu-
sions, administered therapies, performed surgeries, associated tu-
mors, follow-up duration, survival, and cause of death. The 
percentage of all MESA tumors and of each type of MESA tumor in 
the MEN1 population was also ascertained. 

Brain and spine MRI examinations were not systematically per-
formed for each patient. However, following recommendations, all 
patients with MEN1 undergo brain MRI follow-up for pituitary 
tumors. No systematic MRI central review was performed. All op-
erated and diagnosed tumors are recorded in the data collection. 

Genomic analysis on tumor tissues 
Genomic analyses were performed on DNA from formalin-fixed 

paraffin-embedded (FFPE) MESA tumors of patients with MEN1 
and sporadic MESA as previously described (Supplementary Tables 
S1, S2, and S3; refs. 15, 16). MEN1 somatic mutation was analyzed 
by Sanger sequencing (if unsuccessful, MEN1 sequencing was per-
formed by NGS), somatic driver mutation by NGS, MEN1 deletion 
in sporadic tumors by MLPA, and NF2 copy number variation 
(CNV) by RT-qPCR (15–20). 

Translational Relevance 
The increase in the incidence of pituitary tumors is now well- 

demonstrated in patients with multiple endocrine neoplasia type 
1 (MEN1). In contrast, the association of MEN1 with other 
central nervous system (CNS) tumors remains uncertain. MEN1 
is suspected to increase the risk of developing ependymomas and 
meningiomas, but data on this subject are scarce. We describe 
here the epidemiological analysis of 1,498 patients with MEN1 in 
order to decipher the frequency, incidence, and characteristics of 
CNS tumors in patients with MEN1 and the impact on patient 
survival. The study population was extracted from the French 
Association Francophone de Chirurgie Endocrinienne and Groupe 
d’étude des Tumeurs Endocrines cohort of patients with MEN1, 
which includes individuals diagnosed in 1990 and later. We 
explored the involvement of MEN1 in the tumorigenesis of CNS 
tumors by performing molecular analysis on meningioma and 
ependymoma tissues from patients with and without MEN1. 
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Seven FFPE meningiomas or ependymomas were available from 
the MEN1 cohort. A neuropathological central review of these seven 
tumors was performed. The sporadic tumors included (i) 21 frozen 
sporadic meningothelial meningiomas (Supplementary Table S1), 
(ii) 20 frozen non-meningothelial meningiomas (Supplementary 
Table S2), and (iii) nine FFPE ependymomas (Supplementary Table 
S3). A neuropathological review was performed, including the as-
sessment of tumor cell percentage. 

DNA was extracted using the QIAamp DNA FFPE Tissue Kit 
(Qiagen, Courtaboeuf, France) for FFPE tissues or using the 
QIAamp DNA Mini Kit (Qiagen). 

For tumors from patients with MEN1, loss of heterozygosity was 
assessed by Sanger sequencing targeting the exon carrying each 
MEN1-mutated patient’s mutation [MEN1 (NM_130799) primers 
are available on request]. If unsuccessful, MEN1 sequencing was 
performed by NGS using a custom QIAseq Targeted DNA panel 
(Qiagen) on the MiSeqDx system (Illumina; ref. 15). 

In parallel, a somatic driver mutation was sought in 10 of the 
most frequent genes in meningioma tumorigenesis, NF2, AKT1, 
TRAF7, PIK3CA, KLF4, SMO, SMARCB1, TERT, and CDKN2A/B 
(20), and added to SUFU and SMARCE1, and in PTEN, which is 
suspected to predispose to meningioma through Cowden syndrome, 
as previously described (14). Sequencing of POLR2A, BAP1, and 
PIK3R1 was not available in this study (17–19). 

Sporadic frozen tumors were analyzed (i) for MEN1 somatic 
mutation by Sanger sequencing, (ii) for MEN1 deletion by MLPA 
using the P244 MLPA Probe Mix (MRC-Holland), (iii) for a somatic 
driver mutation by NGS, as described above, and (iv) for CNV of 
NF2 by RT-qPCR using the HS00918833-CN TaqMan® Copy 
Number Assays (Roche) on a Viia 7 system (Applied Biosystems; 
ref. 14). Sporadic FFPE ependymomas were analyzed by NGS for 
MEN1 and NF2 mutations and CNV as described above. CNV 
analysis was performed using the Copy Number Variant Detection 
tool of the CLC Genomics Workbench v20 software (Qiagen). 

Statistical analysis 
Descriptive results are expressed as percentages for qualitative 

variables and as means or medians (with SDs or IQRs) for con-
tinuous variables according to their distribution. Statistical analyses 
were performed using Prism v6.0 (GraphPad software). Patient 
characteristics were compared using the two-tailed Fisher exact test 
for qualitative variables and the non-paired non-parametric Mann– 
Whitney test for quantitative values. For all analyses, a P value 
below 0.05 was considered significant. 

Methods used for the calculation of incidence rates 
We estimated the incidence rate of CNS tumors (overall and 

separately according to each type of tumor) in male and female 
patients with MEN1 by dividing the number of MESA tumors in 
this population by the number of person-years at risk. This number 
corresponds to the sum of the number of years that each patient 
included in the cohort was exposed to that risk, i.e., from the date of 
birth to the onset of a CNS tumor for patients experiencing this type 
of tumor or to death or the last follow-up otherwise. This incidence 
was calculated for the entire MEN1 cohort also by gender and by 5- 
year age group, with their 95% confidence intervals (95% CI), per 
100,000 persons. The population was divided into 18 age groups of 
5 years each, from 0 to more than 85 years. In order to allow 
comparison with other populations, we standardized the incidence 
rates on gender and age using the European population as the ref-
erence (Waterhouse and colleagues, 1976) by multiplying the age- 

specific incidence rates estimated in our cohort by the number of 
persons in each gender and age group of the standard population. 

We also estimated the standardized incidence ratio (SIR) using 
the indirect standardization method. The SIR of CNS tumors in 
patients with MEN1 was thus calculated as the ratio between the 
number of observed cases of CNS tumors in the MEN1 cohort and 
its expected number given the incidence by the same gender and age 
group in the general population. We used the incidence rates 
extracted from the French Gironde CNS Tumor Registry from the 
period 2015 to 2019. All the calculations were made using STATA/ 
IC 15.1 software using the commands “stptime” and “strate, smr().” 

Data availability 
The data will be made available upon reasonable request. Request 

for access to data extracted from the French MEN1 cohort database 
could be directed to the data collection manager, Dr Pierre Goudet 
(pierre.goudet@u-bourgogne.fr). Data from the Gironde CNS Tumor 
Registry could be accessible via the dedicated website https://sites.bph.u- 
bordeaux.fr/REGISTRES-CANCERS-AQUITAINE/Snc/S_Accueil.aspx. 

About molecular data, only targeted sequencing at the constitu-
tional or somatic level was performed in this study. All variants 
found on somatic DNA are reported in Supplementary Tables S1, 
S2, and S3. All variants found on germline DNA are reported in 
Tables 4 and 5. 

Results 
From February 1991 to January 2021, the GTE MEN1 cohort 

included 1,498 symptomatic patients. A total of 29 CNS tumors 
were found (2%). There were 12 meningiomas (0.8%), 8 ependy-
momas (0.5%), 5 astrocytic and/or oligodendrocytic tumors (0.3%), 
and 4 schwannomas including 2 vestibular schwannomas (0.3%). 

In the present study, the standardized incidence rate (SIR) of CNS 
tumors was at 47.4 per 100,000 person-years (56 per 100,000 person- 
years for males and 42.8 per 100,000 person-years for females; Table 1). 
The standardized incidence rate for meningiomas, ependymomas, 
schwannomas, and astrocytomas was at 18.9, 20.9, 6.9, and 8 per 
100,000 person-years, respectively. The SIR for CNS tumors in the 
present MEN1 population was at 4.5 (3.2–6.5; Table 1). 

The presence of CNS tumors in patients with MEN1 was sig-
nificantly correlated with the presence of adrenal NET (51.7% of 
patients with MESA vs. 27.2% of patients without MESA; P < 0.01; 
Table 2). Meningiomas were mainly associated with adrenal NET: 
8/12 patients with MEN1 with meningiomas harbored an adrenal 
NET (P ¼ 0.001 vs. the whole series), whereas 3/8 patients with 
MEN1 with ependymomas, 3/5 patients with MEN1 with astrocy-
tomas, 2/4 patients with MEN1 with schwannomas, and 363/1408 
patients with MEN1 from the AFCE-GTE MEN1 cohort harbored 
an adrenal NET. 

In the present series, meningiomas were also associated with 
pituitary adenomas: 75% (9/12) of patients with MEN1 with me-
ningiomas harbored pituitary adenomas versus 36.7% of patients 
with MEN1 from the AFCE-GTE MEN1 cohort (202/551; 
P ¼ 0.008; ref. 7). In contrast, ependymomas tend to be less frequent 
in patients with MEN1 with pituitary adenomas: 25% (2/8) of pa-
tients with MEN1 with ependymomas harbored pituitary adenomas 
(P ¼ 0.06 vs. patients from the AFCE-GTE MEN1 cohort; ref. 7). 

The subtypes of associated pituitary adenomas were various, in-
cluding prolactinomas, growth hormone–secreting adenomas, 
ACTHomas, and nonfunctioning pituitary adenomas. No other 
significant association was observed between the different tumors 
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observed in patients with MEN1 and CNS tumors or MESA tumors 
individually (Tables 2 and 3). No association was observed between 
the type of mutation and MESA tumors, and there was no intra-
familial association. 

Tumor features 
Tumor features are summarized in Table 3. Half of the patients 

with meningioma (6/12) were operated on. Neuropathology con-
clusions were not available for one old case. Non-operated cases 
were asymptomatic, stable, and/or with limited size. Meningiomas 
were exclusively intracranial but with various locations. The female/ 
male ratio was 1/1. The standardized incidence rate for meningioma 
was 23.1 per 100,000 person-years for males and 16.2 per 
100,000 person-years for females (Table 1). The age-adjusted SIR 
was 11.8 for males and 1.4 for females and was particularly high for 
young population of ages 15 to 24 years (Table 1). The mean time 
between MEN1 and meningioma diagnosis was 7.4 years (3 years 

before to 22 years after MEN1 diagnosis). Neuropathological results 
confirmed a meningothelial subtype in 4/5 operated cases, including 
one case with a World Health Organization (WHO) grade 2 
meningothelial atypical meningioma (Ki 5%–6%). In the remaining 
non-meningothelial case, the meningioma was transitional atypical 
WHO grade 2 with a low mitotic index. Meningioma was never a 
cause of death in the cohort. The mean follow-up time from me-
ningioma diagnosis was 10.8 years. 

All ependymomas (n ¼ 8) but one were operated on. Two were 
intracranial: one in the pineal location (21) and the other frontal 
intraventricular anaplastic (Table 3). Six of the seven operated 
ependymomas were classified as WHO grade 2 with two papillary 
subtypes. The remaining non-operated ependymoma presented 
typical features on MRI and was non-symptomatic and nongrowing. 
The female/male ratio was 1/1. The age-adjusted SIR for ependy-
momas was 17.6 (Table 1). One patient was operated for a frontal 
intraventricular anaplastic ependymoma and then treated by 

Table 1. Crude and European SIRs for CNS tumors (except pituitary tumors) from the present MEN1 cohort and from the French 
Gironde CNS Tumor Registry (extracted data from 2015 to 2019) used for the calculation of the standardized incidence ratio for CNS 
tumors (except pituitary tumors) in the present MEN1 cohort. Incidence rates are expressed per 100,000 person-years. 

Tumors Gender 

MEN1 Cohort: incidence rates 

French Gironde CNS 
Tumor Registry: 
incidence rates 
(2015–2019) 

Observed 
patient 
number 

Expected 
patient 
number 

SIR 
(95% CI) 

Crude 
(95%CI) 

European 
standardization (95% 
CI) Crude 

European 
standardization 

CNS tumors All patients 39.1 (27.2–56.3) 47.4 (28.9–65.8) 16.3 11.7 29 6.4 4.5 (3.2–6.5) 
Male 40.7 (23.6–70.1) 56.0 (22.1–89.9) 8.5 6.4 13 1.4 9.5 (5.5–16.4) 
Female 37.9 (23.2–61.9) 42.8 (20.8–64.7) 23.8 13.8 16 5.0 3.2 (2.0–5.2) 

Meningiomas All patients 16.2 (9.2–28.5) 18.9 (7.7–30.1) 13.3 9.1 12 4.8 2.5 (1.4–4.5) 
Male 18.8 (8.4–41.8) 23.1 (3.2–43.1) 5.6 3.4 6 0.5 11.8 (5.3–26.4) 
Female 14.2 (6.4–31.7) 16.2 (2.9–29.5) 20.8 14.4 6 4.2 1.4 (0.6–3.1) 

Ependymomas All patients 10.8 (5.4–21.6) 13.6 (3.2–23.9) 0.6 0.6 8 0.5 17.6 (8.8–35.1) 
Male 12.5 (4.7–33.4) 20.9 (0–44.2) 0.5 0.7 4 0.2 19.1 (7.2–51) 
Female 9.5 (3.6–26.3) 9.7 (0–19.6) 0.7 0.5 4 0.3 16.2 (6.1–43.3) 

Astrocytomas and 
oligodendrocytic 
tumors 

All patients 6.8 (2.8–16.2) 8.0 (0.4–15.5) 1.1 1.2 5 0.9 5.8 (2.4–13.9) 
Male 3.1 (0.4–22.2) 3.3 (0–9.8) 1.5 1.8 1 0.6 1.7 (0.2–12) 
Female 9.5 (3.6–25.2) 11.1 (0–22.8) 0.7 0.7 4 0.3 14.8 (5.6–39.5) 

Schwannomas All patients 5.4 (2.0–14.4) 6.9 (0–14.1) 1.3 0.8 4 0.3 12.7 (4.8–33.9) 
Male 6.3 (1.6–25) 8.6 (0–21.5) 0.8 0.4 2 0.1 35.3 (8.8–141) 
Female 4.7 (1.2–19) 5.7 (0–14.1) 1.8 1.1 2 0.3 7.7 (1.9–31) 

Table 2. MESA patient characteristics and comparison with non-MESA patients from the MEN1 cohort. 

N = 1,498 
Available for 
computation 

With CNS tumor 
(N = 29) 

Without CNS tumor 
(N = 1,469) P-value 

Age at MEN1 diagnosis 1,361 40.4 years (35.2–45.7) 38.1 years (38.2–40.0) 0.3 
Hyperparathyroidism 1,403 27/29 (93.1%) 1,252/1,374 (91.1%) 0.7 
Sex, male/female 1,437 13/29 (44.8%) 612/1,408 (43.5%) 1 
Bronchial NET 1,361 2/29 (6.9%) 83/1,332 (6.2%) 0.9 
Thymic NET 1,360 1/29 (3.4%) 55/1,331 (4.1%) 0.8 
Duodeno-pancreatic NET 1,373 24/29 (86.2%) 972/1,344 (72.3%) 0.1 
Zollinger–Ellison 1,397 9/29 (31.0%) 328/1,368 (23.9%) 0.4 
Pituitary NET 1,369 17/29 (58.6%) 585/1,340 (43.7%) 0.1 
Adrenal NET 1,362 15/29 (51.7%) 363/1,333 (27.2%) <0.01 
Deaths 1,437 11/29 (37.9%) 293/1,408 (20.8%) 0.04 
Probability of life at 70 years 1,374 15.4% (95% CI, 1.0–47.0) 42.5% (95% CI, 36.7–48.2) 0.04 
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complementary radiation therapy and for a spinal ependymoma 
8 years later. The mean time between MEN1 and ependymoma 
diagnosis was 8 years (from 8 years before to 35 years after MEN1 
diagnosis). The mean follow-up time from ependymoma diag-
nosis was 8 years (1–24 years). One patient died from the 
tumor (21). 

All but one of the five cases of low-grade gliomas were operated 
on. One was dorsal intramedullary, and histological conclusions 
were non-contributive for this case. One was a WHO grade 1 as-
trocytoma with an intraventricular location. The patient died 
1 month after surgery because of brain hematoma. One was a WHO 
grade 2 astrocytoma with WHO grade 4 transformation 7 years 

later. One was a WHO grade 2 oligoastrocytoma with WHO grade 3 
transformation 20 years later with 1p-19q codeletion. These two 
cases were classified following the 2007 WHO classification, and no 
tumor material was available for review or genomic analysis. Three 
of five patients died because of the tumor malignancy or in the 
postoperative period. The non-operated patient presented typical 
MRI features with temporal T2-weighted hypersignal without ra-
diological progression during the first 3 years of follow-up. The 
mean time between MEN1 and astrocytoma diagnoses was 13 years 
(�9 to 16 years). The mean follow-up time from astrocytoma di-
agnosis was 13 years (3–25 years). The age-adjusted SIR of astro-
cytomas and oligodendrocytic tumors was 5.8 (Table 1). 

Table 3. Clinical and histological features of patients with MEN1 with CNS tumors. 

MEN1 
patient Gender 

Age at MESA 
diagnosis 
(years) 

Age at MEN1 
diagnosis 
(years) Location Surgery 

WHO 
grade Subtype Ki 67 

Pituitary 
adenoma 

Adrenal 
NET 

Meningiomas 
1 F 32 28 Suprasellar Yes 1 Meningothelial NA No Yes 
2 F 50 38 Frontal No Yes No 
3 M 45 39 Parasagittal No Yes No 
4 M 34 34 Parasagittal Yes 2 Atypical transitional NA Yes Yes 
5 F 40 34 Parasagittal No No Yes 
6 M 48 34 Temporo-occipital Yes 1 Meningothelial NA Yes Yes 
7 F 27 29 Cerebellopontine 

angle 
Yes NA Yes Yes 

8 M 60 40 Parasagittal Yes 2 Atypical meningothelial 5% No Yes 
9 M 62 59 Frontal Yes 1 Meningothelial NA Yes No 
10 M 42 20 Frontal No Yes No 
11 F 49 49 Occipital No Yes Yes 
12 F 51 33 Occipital No Yes Yes 
Median 46 35 
Mean 45 37 

Ependymomas 
13 M 61 68 C6-C7 Yes 2 7% No No 
14 M 71 35 T5 No Yes No 
15 M 38 37 T5-T6 Yes 2 1% No Yes 
16 F 52 56 C1-T1 Yes 2 Papillary NA No Yes 
17 F 44 38 Pineal Yes 2 NA No Yes 
18 F 29 21 T7-T10 Yes 2 Papillary NA Yes No 
19 M 37 16 T6-T9 Yes 2 2% No No 

29 Frontal 
intraventricular 

Yes 3 30% No No 

20 F 29 20 C7-T1 Yes 2 2% No No 
Median 38 36 
Mean 43 48 

Astrocytic and oligodendroglial tumors 
21 F 9 18 T8-T9 Yes NA Yes No 
22 F 30 33 Intraventricular Yes 1 Astrocytoma Yes No 
23 M 44 40 Supratentorial Yes 2 then 

4 
Astrocytoma then 

Glioblastoma at 7 years 
No Yes 

24 F 47 36 Supratentorial Yes 3 Oligoastrocytoma 
deletion 1p19q 

Yes Yes 

25 F 66 50 Supratentorial No No Yes 
Median 44 50 
Mean 39 36 

Schwannomas 
26 M 64 62 Vestibular Yes No Yes 
27 M 33 32 Vestibular No Yes No 
28 F 20 56 Lumbar Yes Yes No 
29 F 60 37 Lumbar No Yes Yes 
Median 47 47 
Mean 47 47 
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Schwannomas were operated on in 2/4 cases. On imaging, two 
were vestibular and two were spinal. No specific features were 
noted. The female/male ratio was 1/1. The mean time between 
MEN1 and schwannoma diagnosis was �3 years (from �36 years 
before to 22 years after MEN1 diagnosis). The mean follow-up time 
from schwannoma diagnosis was 14 years (0–46 years). None of the 
patients died because of a schwannoma. The age-adjusted SIR of 
Schwannoma was 12.7 (Table 1). 

Survival analysis 
Of the 29 patients with MEN1 harboring CNS tumors, 11 died 

(37.9%). Four deaths were related to CNS tumors: two patients died 
because of malignant transformation of an astrocytoma, one patient 
because of an aggressive ependymoma, and one patient following 
surgery for an astrocytoma (Table 2). 

Somatic molecular analysis 
Among the 29 patients with MEN1 harboring CNS tumors, FFPE 

tissue was available for DNA analysis in seven cases: two menin-
giomas and five ependymomas (Table 4). A MEN1 loss of hetero-
zygosity was observed in the DNA from 1/2 meningiomas and 3/5 
ependymomas, reflecting the loss of the wild-type allele, as a second 
somatic MEN1 mutation was found in another ependymoma 
(Table 4; Supplementary Fig. S1). Overall a MEN1 biallelic inacti-
vation was not found in only two tumors: one meningioma for 
which the loss of the MEN1 wild-type allele was not observed and 
one ependymoma for which a loss of the MEN1-mutated allele was 
observed. The quantity of somatic DNA from four tumors (#4, #8, 
#15, and #16) was sufficient to search for somatic mutations in the 
13 genes that are considered drivers in meningioma, including the 
NF2 gene. For patient #4, bearing an atypical transitional menin-
gioma without MEN1 biallelic inactivation, we observed a somatic 
NF2 pathogenic variant c.905_916delinsA, p.(Gly302AspfsTer26) 
associated with a loss of the NF2 wild-type allele. For patient #8, 
bearing an atypical meningothelial meningioma with a biallelic 
MEN1 inactivation, we found a PIK3CA pathogenic variant c.1090 
G>A, p.(Gly364Arg) at 25% allelic frequency (Table 4). This variant 
has already been described (22). Finally, for patient #15, bearing an 
ependymoma with a biallelic MEN1 inactivation, we identified a loss 
of the NF2 wild-type allele. 

Because the majority of meningiomas in patients with MEN1 
were meningothelial, genomic MEN1 status was analyzed in a series 
of 21 randomly selected sporadic meningothelial meningiomas 
(Supplementary Table S1). No MEN1 mutation was detected by 
Sanger sequencing, but a heterozygous loss of 11q13.1-11q13.2 was 
seen by MLPA in 2 of the 21 (9.5%) tumors (patients #SM16 and 
#SM21). Of the 21 tumors, 71% (15/21) harbored a somatic driver 
mutation in one of the 13 genes (Supplementary Table S1). The 
chr11q13 deletion observed in the two tumors was associated with a 
NF2 biallelic inactivation in one tumor (#SM21), but no somatic 
driver mutation was identified in the other (#SM16; Table 5). Then, 
the frequency of ch11q13 deletion in this series of 21 meningothelial 
tumors was compared with that in a series of 20 non-meningothelial 
tumors (Supplementary Table S2). The chr11q13 deletion was ob-
served in only 1/20 (5%) non-meningothelial meningiomas (#SM30; 
Table 5; Supplementary Table S2). 

Finally, considering the high proportion of ependymomas in 
patients with MEN1, the genomic profile, specifically MEN1, was 
also analyzed in a series of nine sporadic ependymomas. These 
tumors were randomly selected according to their clinical and 
histological characteristics, which were similar to those of 

ependymomas from patients with MEN1 (WHO grade 2, located in 
the spine or posterior fossa). No MEN1 mutation or deletion was 
found in these sporadic tumors (Supplementary Table S3). 

Discussion 
First large study on this topic 

The MEN1 ACFE/GTE cohort is one of the largest cohorts of 
patients with MEN1, which makes obtaining strong epidemiological 
data possible. Many studies were already performed based on this 
cohort by analyzing pituitary adenomas, breast cancer, or DP-NETs 
(12, 23, 24). We therefore attempted to compare the frequency and 
incidence of CNS tumors in the MEN1 population versus the 
general population. 

CNS Tumors 
The standardized incidence rate of CNS tumors was more than 

2-fold higher in the MEN1 population than in the French and US 
populations without including pituitary tumors (Table 1; refs. 25, 
26). This is confirmed by a SIR also highly elevated at 4.5 (3.2–6.5) 
for the MEN1 population versus the French general population 
(Table 1). 

Meningiomas 
Large CNS tumor registries are rare and few of them have been 

collecting data relative to benign tumors for a long period of time 
(27, 28). Moreover, meningiomas may be asymptomatic for ex-
tended periods, or may never be diagnosed, and it is important to 
note that the incidence rate for meningiomas increases with 
age (29). 

In the present study, meningioma incidence in the MEN1 pop-
ulation was at 16.2 per 100,000 person-years (8.2–28.5). In the 
general population of Gironde (a French department), meningioma 
incidence was measured at 6.8, and in the Central Brain Tumor 
Registry of the United States (CBTRUS) it was measured at 9.5 per 
100,000 person-years (Table 1; refs. 26, 28). The SIR was calculated 
at 2.5 (1.4–4.4) and was particularly high for men [11.8 (5.3–26.4)] 
and for young patients (15–24 and 25–64 years; Table 1). Menin-
gioma frequency in the present study was at 0.85%. Previous 
population-based studies indicated that the estimated general pop-
ulation prevalence of meningioma was around 50 to 55 per 
100,000 person-years (30, 31). In 2010, based on the CBTRUS, 
Porter and colleagues published an estimated prevalence rate of 70.7 
per 100,000 person-years (0.07%), with an incidence rate for me-
ningioma at 6.0 (95% CI, 5.8–6.1) per 100,000 person-years, and a 
10-year survival rate at 0.64 (95% CI, 0.6–0.7) for nonmalignant 
meningiomas (nonmalignant meningiomas represent around 97% 
of all meningiomas; ref. 32). 

In addition to registries, population-based neuroimaging studies 
have been performed (33–36). The meta-analysis performed by 
Morris and colleagues (37) concluded that the prevalence of me-
ningioma was 0.29% (95% CI, 0.13–0.51). Vernooij and colleagues 
(35) performed brain MRI in 2,000 asymptomatic people from the 
general population. The percentage of meningioma was 0.9%. 
However, the mean age of the population was 63.3 years (range, 45– 
97 years), and for people aged 45 to 59 years, the prevalence rate was 
only 0.5%. 

In the prospective study conducted by Asgharian and colleagues 
(38), meningioma prevalence in 74 patients with MEN1 (with sus-
pected or proven pancreatic NET) reached 8%, which is consider-
ably higher than that in our series. The control population included 
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185 patients with sporadic Zollinger–Ellison syndrome. All patients 
had received serial brain imaging studies during follow-up. Only 
one patient developed a meningioma in the control population 
versus six among patients with MEN1. The six meningiomas were 
asymptomatic; one was operated on. Therefore, the rate of menin-
giomas operated on was 16.6% (1/6) in Asgharian and colleagues 
(38) versus 50% (6/12) in the present study. The difference in the 
prevalence of meningiomas could potentially be explained by the 
lack of serial brain imaging studies and central MRI review in the 
1,498 patients from the present study because of the low CT-scan 
and brain MRI quality for the first patients included in the 1990s in 
the French cohort database. In conclusion, the difference in me-
ningioma prevalence and incidence between the MEN1 population 
and the general population remains difficult to accurately assess, but 
all relevant studies on the subject strongly suggest a higher rate of 
meningiomas in symptomatic patients with MEN1. 

In our cohort, 6/12 patients were young (ages ≤45 years), and the 
median age at diagnosis was 46 years versus 57 years, 56, and 
66 years, respectively, in the French Gironde, the French operated 
on, and the US meningioma populations (27, 29, 39, 40). The me-
ningioma male to female ratio was at 1/1 with similar incidence 
rates between males and females, which is different from the spo-
radic meningioma population (M/F ratio at 1/2 or 1/3; refs. 26, 28). 
We also found that most MEN1 meningiomas were meningothelial 
subtypes with benign features (mostly non-symptomatic and non- 
operated, with a low Ki67 proliferation index). In accordance with 
the results of Asgharian and colleagues, the locations were varied, 
including the skull base, convexity, and posterior fossa, suggesting 
the lack of a specific mutational pattern (38). In the present series, 
meningiomas were significantly and positively associated with pi-
tuitary adenomas and adrenal NETs, in contrast to ependymomas. 
We do not have obvious explanation. More frequent pituitary im-
aging in patients with pituitary tumor could be suggested, but all 
patients with MEN1 should have pituitary imaging every three years 
as meningiomas are slow-growing tumors. Moreover, this 

association was not observed with ependymomas. Interestingly, the 
association of sporadic meningiomas and sporadic pituitary ade-
nomas remains largely suggested and debated, and the relationship 
is unclear (41–47). For adrenal tumors, patients with MEN1 with 
CNS tumors do not have obvious reasons to undergo more ab-
dominal imaging than patients with MEN1 without CNS tumors. 

MEN1 is a tumor suppressor gene that requires a second hit at the 
somatic level to induce tumor. The most frequent somatic event is 
the loss of the remaining wild-type allele due to chromosome 11q13 
deletion. To distinguish whether these MESA tumors were sporadic 
tumors or arising as a part of the MEN1 syndrome, MEN1 deletion 
was analyzed in tumor DNA. Unfortunately, somatic DNA was 
available for only the two WHO grade 2 meningiomas, which were 
not so representative of the series. Nevertheless, MEN1 biallelic 
inactivation without NF2 alteration was observed in the meningo-
thelial meningioma (#8). The allelic frequency of the PIK3C1 mu-
tation, also present in this tumor, was only at 25%, suggesting a 
second event in tumorigenesis. In contrast, the transitional me-
ningioma (#4) did not present MEN1 deletion but harbored a NF2 
biallelic inactivation. These data are in agreement with the litera-
ture, showing that NF2 is frequently mutated in transitional me-
ningiomas and rarely in meningothelial meningiomas (18, 48). 
Overall, tumorigenesis seems to be related to NF2 alterations in the 
transitional meningioma (#4) and to MEN1 in the meningothelial 
meningioma, which should be considered a MEN1 lesion (#8). 

To better understand the relationship between the MEN1 gene 
and meningiomas, and considering that the majority of meningio-
mas from patients with MEN1 are meningothelial, we assessed the 
MEN1 alterations in sporadic meningothelial meningiomas in 
comparison with that in sporadic non-meningothelial meningiomas. 
Whereas no somatic MEN1 mutation was identified, a chr11q13 
deletion was observed in 9.5% (2/21, #SM16 and #SM21) of 
meningothelial tumors. In non-meningothelial tumors, this per-
centage reached 5% (1/20, #SM30). Bi and colleagues identified 
chr11 deletion in approximately 10% of meningiomas and more 

Table 4. Neuropathological and molecular features of the two meningiomas and five ependymomas from patients with MEN1 for 
which somatic DNA was available. 

Patient 
number Gender 

Age at 
diagnosis 
(years) Tumor 

WHO 
grade Location 

Germline MEN1 
mutation 

Percentage 
of tumoral 
cells MEN1 LOH NF2 alteration 

4 M 34 Atypical 
transitional 
meningioma 

2 Parasagittal c.252_253delTAinsG, 
p.(Ile85SerfsTer3) 

80% No c.905_916delinsA p. 
(Gly302AspfsTer26), 
gene deletion 

8 M 60 Atypical 
meningothelial 
meningioma 

2 Parasagittal c.1037_1038delCT, 
p.(Thr346SerfsTer20) 

100% Yes, loss of the 
wild-type allele 

Nob 

13 M 61 Ependymoma 2 Spine c.1628C>G, 
p.(Ser543Ter) 

NA Yes, loss of the 
wild-type allele 

NA 

15 M 38 Ependymoma 2 Spine c.249_252delGTCT, 
p.(Ile85SerfsTer33) 

100% Yes, loss of the 
wild-type allele 

NA 

16 F 52 Papillary 
ependymoma 

2 Spine c.515A>T, p.(Asp172Val) 100% Yes, loss of the 
wild-type allele 

NO 

17 F 44 Ependymoma 2 Pineal c.1259T>A, 
p.(Ile420Asn) 

NA Yes, loss of the 
mutated allele 

No 

19 H 37 Ependymoma 2 Spine c.1330del, p.(Leu444)a NA No,a second hit 
c.784-9G>A 

NA 

Abbreviation: LOH, loss of heterozygosity. 
aLoss of the mutated allele and somatic MEN1 mutation. 
bPIK3CA pathogenic variant c.1090 G>A, p.(Gly364Arg). 
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frequently in high-grade meningiomas (18, 48). The involvement of 
chr11q13 deletion was unlikely in the sporadic meningothelial and 
non-meningothelial tumors (#SM21 and #SM30) because they 
harbored a NF2 biallelic inactivation. However, chr11q13 involve-
ment could be suspected in the meningothelial tumor (#SM16) 
without other genomic alterations as observed in approximately 
25% of meningiomas (49). Therefore, the involvement of MEN1 
mutation in sporadic meningiomas remains particularly uncertain. 

Ependymomas 
Ependymomas are a relatively rare type of glial tumor that con-

stitutes approximately 2% of all primary CNS tumors with an in-
cidence rate of 0.4/100,000 person-years in the United States and in 
France (25, 26). In the present study, ependymoma incidence in the 
MEN1 population reached 10.8 (95% CI, 5.4–21.6)/100,000 person- 
years with a frequency of 0.5% (8/1,498) with spinal or cranial lo-
cations (Table 1). These tumors, which include different subtypes, 
affect all age groups, and approximately half are located in the spinal 
cord. In the United States, the 10-year relative survival rate and the 
prevalence rate for all subtypes and all locations are 78.6% (95% CI, 
76.3–80.6) and 4.1 (95% CI, 4.0–4.2)/100,000 person-years 
(≈0.004%), respectively (50). In the population-based neuro-
imaging study by Vernooij and colleagues (35), only one case of 
ependymoma was observed among the 2,000 recruited patients with 
brain but not spine MRI (0.05%). In patients with MEN1, only a few 
isolated cases of ependymomas have been reported in the literature 
(21, 51–54). The median age at diagnosis was 38 years in the present 
cohort versus 45 years in the US general population and 42 years in 
the French operated-on population (25, 27). In conclusion, we 
show, for the first time, that the prevalence and incidence of 
ependymomas are increased in patients with MEN1. 

In the five tested ependymomas from patients with MEN1, a 
somatic biallelic gene inactivation was observed in four tumors, 
three through a MEN1 deletion and one through a second somatic 
MEN1 mutation. Cuevas-Ocampo and colleagues also observed a 
somatic MEN1 deletion in an ependymoma from a patient with 
MEN1 (51). Moreover, ependymoma prevalence in our MEN1 
population is considerably higher than that in the general pop-
ulation. Overall, all these elements suggest that ependymomas 
should be considered part of the MEN1 syndrome. 

The ependymomas in our cohort, which were mostly WHO grade 
2, were from different subtypes and locations. Only the two intra-
cranial tumors, one pineal case (#17; ref. 21) with a benign neuro-
pathological pattern and one intraventricular case (#19), presented 
an aggressive course. 

To better understand the relationship between the MEN1 gene 
and ependymomas, regardless of the MEN1 syndrome, we assessed 
MEN1 deletion and mutation in a series of nine sporadic WHO 
grade 2 ependymomas. No somatic MEN1 alteration was observed. 
This lack of MEN1 deletion was in agreement with the literature 
showing that the 11q deletion is exceptional in ependymomas (55). 

Astrocytic and/or oligodendrocytic tumors 
Among the 1,498 patients with MEN1, our study included one 

WHO grade 1 astrocytoma and four diffuse low-grade gliomas 
(0.3%) at the time of diagnosis. Recently, a xanthoastrocytoma was 
reported in a patient with MEN1 (56). 

The incidence and prevalence of diffuse low-grade gliomas are 
estimated at 1/100,000 person-years and 10/100,000 persons 
(0.01%), respectively (26, 39, 57, 58). On the other hand, a meta- 
analysis of brain MRI studies in the healthy population showed a Ta
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prevalence of 0.05% (37). The incidence rate of low-grade glioma 
was at 6.8/100,000 person-years (95% CI, 2.8–16.2) in the present 
series (Table 1). At diagnosis, no malignant glioma was reported in 
the present series, but two low-grade gliomas presented a malignant 
transformation. In the French Gironde CNS Tumor Registry and in 
the CBTRUS, the incidence of low-grade astrocytic and oligoden-
drocytic tumors was, respectively, at 0.8 and 1.13/100,000 person- 
years, and the incidence of all astrocytic and oligodendrocytic tu-
mors (including low- and high-grade tumors) was, respectively, at 
6.78 and 4.94/100,000 person-years (26). The median age at tumor 
diagnosis was 44 years in the present cohort versus 62 years in the 
US general population and 58 years in the French operated-on 
population (25, 27). Therefore, the incidence for low-grade astro-
cytic and oligodendrocytic tumors was higher in the MEN1 pop-
ulation than in the general population. 

Schwannomas 
In the present study, schwannoma incidence was at 5.4 (95% CI, 

2.0–14.4)/100,000 person-years versus 2.33 in the French Gironde 
CNS Tumor Registry (Table 1; ref. 28) In the United States, the 
incidence of nerve sheath tumors is 2.0 (95% CI, 1.99–2.03)/ 
100,000 person-years (26). The prevalence of incidental vestibular 
schwannoma in studies of temporal bones at autopsy varied from 
0% to 2.4% (59). Similarly, the prevalence of incidental vestibular 
schwannomas in population-based neuroimaging studies varied 
from 0.02% to 0.2% (35, 36, 60, 61). In the present study, we 
identified 4/1,498 cases (0.3%) of schwannoma, including two ves-
tibular schwannomas (0.15%). Therefore, the incidence and fre-
quency of nerve sheath tumors seem to be higher in patients with 
MEN1 than in the general population, although the number of re-
ported cases remains low (62, 63). The age-adjusted SIR was at 12.7 
(4.8–33.9; Table 1). The median age at tumor diagnosis was 46 years 
in the present cohort versus 55 years in the US general population 
and 52 years in the French operated-on population (25, 27). 

The role of MEN1 in CNS tumor tumorigenesis 
The molecular relationship between CNS tumors and MEN1 al-

terations remains unclear. A cell autonomous effect induced by 
MEN1 double hits is present in a minority of CNS tumors of pa-
tients with MEN1. Based on the accurate epidemiological data 
presented here, we cannot argue a simple co-occurrence of tumors. 
Moreover, the sexual dimorphism, obvious in sporadic meningio-
mas with a predominance of females (2:1), disappears for menin-
giomas in patients with MEN1, suggesting other tumorigenesis 
pathways. Moreover, the lack of MEN1 mutation at the somatic level 
in sporadic tumors, not only in CNS as meningiomas or ependy-
momas but also in pituitary adenomas, raises questions about the 
oncogenic mechanisms of MEN1. 

The hypothesis could be the existence of non-cell autonomous 
effects that promote CNS tumor tumorigenesis. In other words, the 
deregulation of CNS tumor proliferation may depend on the para-
crine activity of surrounding cells induced by MEN1 alterations. 
Numerous data clearly demonstrated the role of the microenvi-
ronment in tumorigenesis as meningeal immunity cells (64); how-
ever, experimental works are required to support this hypothesis. 

CNS tumors and survival 
Whether CNS tumors impact the survival of patients with MEN1 

is also an important issue. The mortality rate was significantly 
higher in patients with MEN1 harboring CNS tumors than in pa-
tients with MEN1 without CNS tumors, mainly because of poor 

outcomes related to malignant gliomas. All of the meningiomas 
from our series were benign and did not impact survival. 

Study limitations 
Systematic pituitary MRI is required for the follow-up of patients 

with MEN1 to assess the occurrence of pituitary adenomas. Nev-
ertheless, we did not perform a MRI central review, which could 
lead to underestimation of asymptomatic non-operated CNS tu-
mors. Moreover, the first patients included in the data collection in 
the 1990s were followed up with old-generation CT-scan and MRI, 
which could also lead to underestimation of asymptomatic non- 
operated CNS tumors. Systematical spine MRIs were not performed, 
which could lead to underestimation of non-symptomatic intra- or 
extradural spinal tumors. 

In contrast, intensive imaging surveillance of patients with MEN1 
could lead to a surveillance bias and then to overestimation of tumor 
frequency, particularly for non-symptomatic tumors. The present 
cohort was compared with non-screened registries: the CBTRUS, the 
Gironde CNS Tumor Registry, and the Darlix and colleagues study 
which includes French operated-on CNS tumors (25, 27, 28). In the 
present study, nevertheless, all patients were not systematically 
screened: brain or spine MRIs were not systematically performed to 
search for CNS tumors. Pituitary MRI was performed every 
three years as recommended, and 68-Gallium DOTATOC PET was 
mostly performed to stage an already known duodeno-pancreatic 
tumor. For instance, operated-on meningiomas represent 63% of 
meningiomas in the Gironde CNS Tumor Registry versus 50% from 
the present cohort versus 15% from the Asgharian and colleagues 
study with central review (29, 38). Therefore, we cannot exclude an 
overdiagnosis bias because of the cumulative aspect of repeated im-
aging during the follow-up. However, it is probable that this bias 
would mainly concern non-symptomatic lesions and, in contrast, 
would be very limited for symptomatic and most operated lesions. 

Moreover, we selected 2015–2019 data from the Gironde CNS 
Tumor Registry given that an increase in CNS tumor incidence was 
observed between 2000 and 2012 in Gironde (French department) 
and no major changes were observed for the incidence of malignant 
and nonmalignant CNS tumors in the US population during the last 
two decades (27, 28). This point could lead to underestimation of 
the difference between the CNS tumor incidence rates from the 
present MEN1 cohort and the other compared general population 
registries. Nevertheless, the CNS tumor incidence rates remain 
higher in the present MEN1 cohort. 

A central neuropathological review was performed for cases of 
meningiomas and ependymomas with molecular analysis, but not in 
other cases of MESA, related to a lack of available tumor material. 
Nevertheless, WHO classification changes in the last decades were 
not major for MESA and, therefore, should not impact the study 
results. Genomic analyses were not possible for astrocytomas and 
oligodendrocytic tumors related to the lack of available tumor 
materials, leading to incomplete conclusions about the involvement 
of the MEN1 syndrome in the occurrence of these gliomas. 

Impact of the present study on the follow-up of patients with 
MEN1 

Pituitary MRI follow-up is already required for pituitary adenoma 
observation. 68Ga-DOTATOC PET could also be performed in the 
case of DP-NET exploration. The results of the present study led to 
recommend watchful radiological analysis for meningioma detection. 

Despite a higher rate of ependymomas in patients with MEN1 
compared with the general population, ependymomas and other 
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CNS tumors with spinal location are present in less than 1% of the 
MEN1 population. The present data suggest concluding that sys-
tematical spinal MRI is not required for intra- or extra-axial spinal 
tumor detection. In contrast, careful neurological examination is 
recommended, and spinal MRI should be prescribed in the case of 
neurological examination alteration. 

Conclusion 
The frequency and the incidence of meningiomas (respectively, 

0.8% and 16.2/100,000 person-years), ependymomas (0.5% and 10.8/ 
100,000), astrocytic and oligodendrocytic tumors (0.3% and 6.7/ 
100,000), and schwannomas (0.3% and 5.4/100,000) are higher in 
patients with MEN1 than in the general population. The association 
with the biallelic inactivation of MEN1 within these tumors supports 
the fact that meningiomas and ependymomas should be considered 
part of the MEN1 syndrome in the majority of cases. There is a lack of 
molecular data for low-grade gliomas and schwannomas even if the 
incidence is increased in the MEN1 population. 
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